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The problem of computing the index of a coincidence isometry of the hypercubic

lattice Zn is considered. The normal form of a rational orthogonal matrix is

analyzed in detail and explicit formulas for the indices of certain coincidence

isometries of Zn are obtained. These formulas generalize the known results for

n � 4.

1. Introduction

The theory of the coincidence site lattice (CSL) can be used to

describe certain phenomena that arise in the physics of

interfaces and grain boundaries (see Bollmann, 1970;

Grimmer, 1973, 1976). Mathematically, CSL theory concerns

the relationship between a lattice L and a transformed copy

AL of L, where A is a linear transformation of the n-dimen-

sional real vector space V spanned by L. We call A a coinci-

dence symmetry ifA is an automorphism of V and L \ AL is a

sublattice of L with finite index. It is known (see x2) thatA is a

coincidence symmetry if and only if the matrix A ofA under a

basis of L is a rational matrix. The set of all coincidence

symmetries (or the set of all n� n coincidence matrices) of L

forms a group under the multiplication defined by composi-

tion (or the multiplication of matrices). If L is a lattice of the

Euclidean space Rn, then one is interested in the isometries of

Rn which are coincidence symmetries of L. In this case, we

have the coincidence isometry subgroup formed by all the

coincidence isometries (Baake, 1997).

One of the main problems in CSL theory is the computation

of the index of coincidence of L \ AL in L (also called

degree). Fortes (1983a,b) provided a general approach to this

problem by using the normal form of an integer matrix and

Duneau et al. (1992) published a further study along a similar

line. Although theoretically it is possible to compute the index

of a coincidence transformation via the normal form of the

corresponding integer matrix by Fortes’s result, no general

index formula in n dimensions is known even for the co-

incidence symmetries of the hypercubic lattice Zn. For the

coincidence isometries, it is possible to give more explicit

results. Pleasants et al. (1996) used number theory to treat the

planar case. Baake (1997) provided a solution to this problem

for the coincidence isometries for dimensions up to four by

using the factorization properties of certain number systems.

However, the method does not generalize to higher dimen-

sions. Recently, the geometric algebra method was introduced

into the study of CSL theory by Aragón et al. (2001) and

Rodrı́guez et al. (2005). But only the planar case was treated.

Zeiner (2006) provided a detailed analysis for the coincidence

indices of hypercubic lattices in four dimensions.

In this paper, we derive several formulas for the index of a

coincidence isometry of the lattice Zn for arbitrary n. We

analyze the normal form of the corresponding integer matrix

of a coincidence isometry taking into account the orthogonal

property. The main formulas are given in Theorems 3.1 and

3.2.

2. Preliminaries

The set of real numbers (respectively, integers and rational

numbers) is denoted byR (respectively, Z andQ), the set of all

non-singular n� n real matrices is denoted by GLnðRÞ and the

set of n� n real orthogonal matrices is denoted by OnðRÞ.

Notation for matrices overQ and Z are defined similarly. For a

non-zero integer matrix Z, we denote by gcdðZÞ the greatest

common divisor of the non-zero entries of Z.

By an n-dimensional lattice L with basis ða1; . . . ; anÞ, we

mean the free Abelian group �n
i¼1Zai. In this paper, we only

consider lattices in the n-dimensional Euclidean space Rn, and

we assume the lattices are also n-dimensional. Thus, a lattice

L � Rn is given by an n� n non-singular matrix A (called the

structure matrix of L), and a basis of the lattice is

ða1; . . . ; anÞ ¼ ðe1; . . . ; enÞA; ð1Þ

where ðe1; . . . ; enÞ is the canonical basis of Rn.

By a sublattice L0 � L, we mean a subgroup L0 of finite

index in the Abelian group L. The CSL theory concerns the

problems that arise when the intersection L1 \ L2 of two

lattices happens to be a sublattice of both lattices L1 and L2. If

this is the case, we say that L1 and L2 are commensurate

lattices.

Suppose that Li is given by the structure matrix Ai (i ¼ 1; 2)

and let the basis of Li be Bi, i.e.

Bi ¼ ðe1; . . . ; enÞAi; i ¼ 1; 2:

Then a theorem due to Grimmer states that L1 and L2 are

commensurate if and only if A�1
2 A1 is a rational matrix. This



implies that, if L is a lattice with basis ða1; . . . ; anÞ and A is an

n� n non-singular real matrix, then the lattice with basis

ða1; . . . ; anÞA and the lattice L are commensurate if and only if

A is a rational matrix.

Consider a lattice L in Rn with the structure matrix A. Let

T be a linear transformation of Rn and let T be the matrix of

T under the canonical basis ðe1; . . . ; enÞ. Then the structure

matrix of the lattice T ðLÞ is TA. Thus the lattice T ðLÞ and the

lattice L are commensurate if and only if A�1TA is rational.

The isometries of Rn that provide commensurate lattices to a

lattice L are of special interest (cf. Baake, 1997; Aragón et al.,

2001; Rodrı́guez et al., 2005); let us recall the relevant defini-

tions. The following group was defined in Baake (1997):

OCðLÞ ¼ fY 2 OðnÞ : ½L : L \ YL�<1g:

The group OCðLÞ is called the coincidence isometry group

(CIG) of L. For Y 2 OCðLÞ, let

�LðYÞ ¼ ½L : L \ YL�:

If the structure matrix of L is A, then the group OCðLÞ is

isomorphic to OnðR
n
Þ \ ðAGLnðQÞA

�1Þ. If further A is a

rational matrix (in particular, this is the case if L ¼ Zn), then

OCðLÞ ¼ OnðQÞ :¼ OnðR
n
Þ \GLnðQÞ;

i.e. the corresponding group OCðLÞ is formed by the rational

orthogonal matrices. In this case, OCðLÞ is generated by the

reflections defined by the non-zero vectors of L (see Zou,

2006). For Y 2 OnðQÞ, we write

Y ¼
t

q
Z; ð2Þ

where t; q 2 Zþ such that gcdðt; qÞ ¼ 1 and Z is an integer

matrix such that gcdðZÞ ¼ 1. Then since det Z 2 Z and

det Y ¼
t

q

� �n

det Z ¼ �1;

we must have t ¼ 1 and

Y ¼
1

q
Z: ð3Þ

Let qi (i ¼ 1; . . . ; n) be the diagonal elements of the normal

form of Z (Fortes, 1983a,b) and let

qðiÞ ¼
q

gcdðq; qiÞ
: ð4Þ

Then Fortes’s result says that

�Zn ðYÞ ¼ qð1Þqð2Þ . . . qðnÞ: ð5Þ

Since gcdðZÞ ¼ 1, q1 ¼ 1 and thus qð1Þ ¼ q. Furthermore, we

have the following basic lemma.

Lemma 2.1. Let Y , Z and q be as in (3), and let qi

(i ¼ 1; . . . ; n) be the diagonal elements of the normal form of

Z. Then qiqn�iþ1 ¼ q2.

Proof. From the discussion above, there are P;Q 2 GLnðZÞ

(integer matrices with det ¼ �1) such that

PYQ ¼
1

q

1

q2

. .
.

qn

0
BBB@

1
CCCA: ð6Þ

Taking inverses, we have

Q�1Y�1P�1 ¼ q

1

q�1
2

. .
.

q�1
n

0
BBBB@

1
CCCCA

¼
q

qn

qn

qn=q2

. .
.

1

0
BBBB@

1
CCCCA: ð7Þ

Note that the last integer matrix has the normal form

1

qn=qn�1

. .
.

qn

0
BBB@

1
CCCA: ð8Þ

However, if we take transposes on both sides of (6), we have

QTYTPT ¼
1

q

1

q2

. .
.

qn

0
BBB@

1
CCCA: ð9Þ

Since Y�1 ¼ YT, by the uniqueness of the normal form,

equations (7), (8) and (9) imply that qn ¼ q2, which in turn

implies the lemma. &

We will use this lemma to derive our index formulas in the

next section.

3. Index formulas

In this section, we assume L ¼ Zn and write �ðYÞ for �ZnðYÞ.

We begin with an immediate consequence of Lemma 2.1.

Theorem 3.1. Let Y , Z, q be as in (3), and let �i be the greatest

common divisor of the determinants of the i� i minors of Z

(i ¼ 1; . . . ; n). Then,

�ðYÞ ¼
qm

�m

; ð10Þ

where m ¼ ½n=2� is the integer part of n=2.

Proof. Since the diagonal elements of the normal form of Z

satisfy qi j qiþ1, by Lemma 2.1, qi j q if i � m, and q j qi if

i>m. Thus the qðiÞ defined in (4) are given by

qðiÞ ¼
q=qi if i � m,

1 if i>m.

n
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Therefore, since the greatest common divisors of the deter-

minants of the minors of Z and its normal form are the same

(see for example pp. 458 and 485 in Artin, 1991), using (5), we

have

�ðYÞ ¼
qm

q1 . . . qm

¼
qm

�m

:

&

Remark. Note that since �1 ¼ 1, for n � 3, formula (10)

simplifies to the known result �ðYÞ ¼ q (see Baake, 1997).

Note also that, for n ¼ 4 and 5, the formula is the same:

�ðYÞ ¼ q2=�2.

Since the group OCðZn
Þ is generated by reflections defined

by the non-zero vectors of Zn, we now turn to the reflections.

Let

0 6¼ v ¼
Pn

i

aiei; ai 2 Z; 1 � i � n: ð11Þ

Since we are interested in the reflection defined by v, we can

always assume that gcdða1; . . . ; anÞ ¼ 1. Under the canonical

basis, the reflection of Rn defined by v has the matrix

Rv ¼ I � 2
vvT

vTv
¼

1

vTv
ðvTvI � 2vvT

Þ; ð12Þ

where vT is the transpose of v.

Lemma 3.1. Let v be as above. Then

gcdðvTvI � 2vvT
Þ ¼

1 if vTv is odd,

2 if vTv is even.

�
ð13Þ

Proof. The ith row of the matrix vTvI � 2vvT is

ri ¼ ð�2aia1; . . . ; vTv� 2a2
i ; . . . ;�2aianÞ:

Let di ¼ gcdðriÞ or gcdðri=2Þ according to whether vTv is odd

or even. We claim that, if a prime p divides di, then it divides ai.

In fact, if

ti ¼ gcdða1; . . . ; ai�1; aiþ1; . . . ; anÞ;

then

di ¼
gcdð2aiti; vTv� 2a2

i Þ if vTv is odd,

gcdðaiti; ðv
Tv� 2a2

i Þ=2Þ if vTv is even.

�

So if p j di but p 6 j ai, then p j ti, implies that p j
Pn

k6¼i a2
k.

However, this would imply that p also divides

a2
i ¼ 2a2

i � vTvþ
Pn
k 6¼i

a2
k;

which is a contradiction. Now the lemma follows since by our

assumption gcdða1; . . . ; anÞ ¼ 1. &

It follows from this lemma that if we write

Rv ¼
1

q
Tv ð14Þ

as in (3), then q ¼ vTv or vTv=2 depending on whether vTv is

odd or even. Moreover, we have the following lemma:

Lemma 3.2. Assume that n> 2. If q1; q2; . . . ; qn are the

diagonal elements of the normal form of Tv, then q2 ¼ q.

Remark. Note that for n ¼ 2 we have q2 ¼ q2 by Lemma 2.1.

Note also that it follows from this lemma that

q2 ¼ . . . ¼ qn�1 ¼ q.

Proof. To prove the lemma, recall that qi ¼ �i=�i�1, where �i is

the greatest common divisor of the determinants of all i� i

minors of Tv (see for example pp. 458 and 485 in Artin, 1991).

Since �1 ¼ 1, we need to prove �2 ¼ q. We give the detail for

the case that vTv is odd, since it will be clear from the

discussion that the same argument works for the even case.

Consider the 2� 2 minors of Tv. If a 2� 2 minor M does not

involve any diagonal element, then detðMÞ ¼ 0. If it involves

diagonal element(s), then there are basically two possibilities:

vTv� 2a2
i � 2aiaj

� 2atai � 2ataj

� �
or

vTv� 2a2
i � 2aiaj

� 2ajai vTv� 2a2
j

� �
:

It is clear that the determinants of both matrices have the

factor vTv, hence our claim follows. &

We now give a formula for the index of a reflection.

Theorem 3.2. Let

0 6¼ v ¼
Pn
i¼1

aiei 2 Z
n with gcdða1; . . . ; anÞ ¼ 1:

Then

�ðRvÞ ¼
vTv if vTv is odd,

vTv=2 if vTv is even.

�
ð15Þ

Proof. This is an immediate consequence of Lemmas 2.1, 3.1

and 3.2. &

This theorem provides the base for using induction to

obtain some interesting results. As an example, we will prove a

proposition.

For i ¼ 1; . . . ; k, let

0 6¼ vi ¼
Pn
j¼1

ajiej 2 Z
n with gcdða1i; . . . ; aniÞ ¼ 1:

Define the integers ri to be vT
i vi or vT

i vi=2 depending on

whether vT
i vi is odd or even.

Proposition 3.1. Assume that gcdðri; rjÞ ¼ 1 for i 6¼ j. Then

�ðRv1
. . . Rvk

Þ ¼ r1 . . . rk:

This proposition follows from Theorem 3.2 and the

following lemma:
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Lemma 3.3. Let Ri 2 OnðQÞ (i ¼ 1; 2) be reflections and write

Ri ¼ ð1=riÞSi as in (3). Assume that gcdðr1; r2Þ ¼ 1 and the

normal forms of Si are

1

ri

. .
.

r2
i

0
BBB@

1
CCCA; i ¼ 1; 2:

If we write R1R2 ¼ ð1=rÞR as in (3), then r ¼ r1r2 and the

matrix R has the normal form

1

r

. .
.

r2

0
BB@

1
CCA:

Proof. Let the normal form of R be

d1

d2

. .
.

dn

0
BBB@

1
CCCA:

Then we know that d1 ¼ 1 and dn ¼ r2, so it remains to prove

that d2 ¼ r. Consider

R1R2 ¼
1

r1r2

S1S2:

If the normal form of S1S2 is

c1

c2

. .
.

cn

0
BBB@

1
CCCA;

then r ¼ r1r2=c1 and di ¼ ci=c1. For an integer matrix A,

denote by �iðAÞ the greatest common divisor of the determi-

nants of the i� i minors of A. Then �iðS1S2Þ are identical to

those of (compare with the proof of Lemma 2.1)

R0 ¼

1

r1

. .
.

r2
1

0
BBB@

1
CCCAS02; ð16Þ

where S02 is obtained from S2 by left multiplying by an element

from GLnðZÞ. Therefore, gcdðS02Þ ¼ 1 and �iðS
0
2Þ ¼ �iðS2Þ.

Thus, if a prime p divides c1 ¼ gcdðR0Þ, it must divide r1.

Similarly, p also divides r2. But gcdðr1; r2Þ ¼ 1, so

gcdðR0Þ ¼ c1 ¼ 1. Thus, r ¼ r1r2 and d2 ¼ c2.

Now c2 ¼ �2ðR
0Þ=c1 ¼ �2ðR

0Þ. Since every 2� 2 minor of R0

contains at least one row of S02 multiplied by r1 or r2
1, we see

that r1r2 ¼ r1�2ðS
0
2Þ j �2ðR

0Þ implies that r j d2. But d2 � r by

Lemma 2.1, so d2 ¼ r. &

It should be pointed out that without the assumption that

gcdðri; rjÞ ¼ 1, the result of Proposition 3.1 does not hold. This

can be seen by noting that the square of a reflection is the

identity.

4. Concluding remarks

It is known that certain positive integers cannot be the co-

incidence isometry indices for the lattice Zn when n � 4. In

particular, it is well known that, in dimension 3, the indices

assume precisely the odd positive integers (Grimmer, 1973).

One may ask what happens when n 	 4. This question can be

answered by using the results of the present work together

with some known facts about the square sums of integers.

Recall that a theorem due to Legendre and Gauss says that a

positive integer can be expressed as a sum of three squares if

and only if it is not the form 4mð8kþ 7Þ (Adler & Coury, 1995,

p. 236). It follows from this theorem that every odd positive

integer can be written as a sum of four integers with gcd ¼ 1.

To see this, note that, for n 	 0, if

4nþ 1 ¼ a2 þ b2 þ c2;

then since every square is congruent to 0 or 1 modulo 4,

exactly one of a, b and c is odd. Assume that c is odd and write

a ¼ 2u; b ¼ 2v; c ¼ 2t þ 1;

then

ðuþ vÞ2 þ ðu� vÞ2 þ t2 þ ðt þ 1Þ2 ¼ 2nþ 1:

Thus, by Theorem 3.2, the indices provided by OCðZn
Þ (n � 4)

cover all the positive odd integers, although these indices do

not include the powers of 2k for k> 1 (see Baake, 1997).

However, for n ¼ 5, all the positive integers are covered. To

see this, note that, since 2k � 1 is odd, from the above

discussion, 2k can be expressed as a sum of five squares with

gcd ¼ 1, so Theorem 3.2 and Proposition 3.1 imply the result.

The index formulas for the coincidence isometries of the

lattice Zn provided in this work are quite explicit. However,

the computations are more involved in the general cases and

one should not expect to have formulas as explicit. The

connection between the coincidence index formulas and the

related formulas in number theory deserves further attention

(see Baake, 1997).
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